More than an Evolution: a National San Luis Gonzage de loa Of Chinese Academy on New Power MOSFET Viversity Technology for Higher Migher Migher Supplies

Owen Song¹, Ralf Siemieniec², Simone Mazzer², Cesar Braz², Gerhard Noebauer², Michael Hutzler², David Laforet², Elias Pree², Alessandro Ferrara²

¹ Infineon Semiconductors Company Ltd., China
² Infineon Technologies Austria AG, Austria

Evolution of vertical power MOSFET cell structures

The next level in Power MOSFET Technology Evolution

Key performance indicators for fast-switching applications

Application results: hard- and soft-switching DC/DC intermediate bus converters

Conclusion

pcim

The next level in Power MOSFET Technology Evolution

MOSFET structures based on charge compensation

infineon

- Super-junction devices are suited for larger blocking voltages
- Field-plate structures are advantageous for lower voltages

pcim

ASIA

Source 9 Gate

Infineon Proprietary

n

 n^{+}

Drain

Ϋ́Gate

pcim ASIA

E,

Θ

- 1D pn-junction
 - triangular-shaped field in vertical direction _
- 2D charge compensation trapezoidal-shaped field in vertical direction _

_

- triangular-shaped field in lateral direction _
- allows increased doping to reduce on-_ Source resistance

The next chapter in power MOSFET cell evolution

OptiMOS™ 5 Industry's standard 2D stripetrench cell concept

The next chapter in power MOSFET cell evolution

OptiMOS[™] 5

First trench power MOSFET technology with metal gate

Poly-silicon

0 gate fingers

High value for equivalent gate resistance R_{g}

While gate fingers help to reduce the equivalent gate resistance, the distribution remains inhomogeneous, with relevant local deviations

Metal gate No gate fingers needed

Using a metal gate yields a very homogeneous resistance over the chip, supporting fast switching

The benefit of using a metal gate

OptiMOS™ 5

OptiMOS[™] 6

High value for equivalent gate resistance, can be improved with gate fingers on cost of area

Using a metal gate yields a very homogeneous gate resistance over the chip, supporting fast switching

Distributed gate resistance for a common stripe design (left) and the new grid-like design (right)

Direct connection of field-plates with source metallization

OptiMOS[™] 5

Significant variation of equivalent field-plate resistance, slows down switching speed

OptiMOS™ 6 pcim

Direct connection of needle field-plates to source metallization practically eliminates field-plate

Distributed field plate resistance for a common stripe design (left) and the new grid-like design (right)

ASIA

Key performance indicators for fastswitching applications

Figures of merit: specific on-resistance, FOMg and FOMgd

The **OptiMOS™ 6** improve *R*_{DS(on)} besides carrying **low charges**, showing **industry's lowest** *R*_{DS(on)} across

the entire portfolio and **leading FOM**_a and FOM_{ad}.

Infineon

Enhanced Safe-Operating Area

3 Safe operating area

 $I_{D}=f(V_{DS}); T_{C}=25 \text{ °C}; D=0$ parameter: t_{p}

pcim

Infineon

The **SOA** is a diagram defined by the **voltage** and **current conditions** over which a MOSFET can be **operated without incurring into permanent damage or degradation**.

The comparison between SOAs for 80V Best-in-Class OptiMOSTM 5 (1.9 m Ω) and OptiMOSTM 6 (1.8 m Ω) products in PQFN 5x6 mm², highlights a remarkable improvement in the linear region of operation.

pcim ASIA

Application results: hard- and softswitching DC/DC intermediate bus converters

100 V: 600 W Intermediate Bus Converter for Telecom- Primary Side – Hard Switching

OptiMOSTM 6 – **100 V** ISC060N10NM6 (6.0 m Ω) **in PQFN 5x6 package** outperforms OptiMOSTM 5 for comparable $R_{DS(on),}$ thanks to superior switching performances. **Mid- to full-load efficiency improves** thanks to lower R_a and Q_{ad} .

18

100 V: 600 W Intermediate Bus Converter for Telecom- Secondary Side – Soft Switching

OptiMOSTM 6 – 100 V ISC027N08NM6 (2.7 m Ω) in PQFN 5x6 package outperforms OptiMOSTM 5 for same $R_{DS(on)}$. Light-load efficiency improves thanks due to lower Q_{q} , mid- to full-load efficiency improves thanks to lower Q_{RR} .

80 V: 1 kW LLC Intermediate Bus Converter for Datacenter- Primary Side - Resonant Operation 300 kHz

OptiMOSTM 6 80 V ISC031N08NM6 (3.1 m Ω) in **PQFN 5x6 package** outperforms OptiMOSTM 5 for comparable $R_{DS(on)}$. **Efficiency improves up to 0.7%**, thanks to improvements in Q_g and R_{oss} . Potential to replace two devices by one BiC.

20

Conclusion

pcim

- A new power MOSFET technology was developed that improves all important device parameters
- The substantial gain in the device performance is enabled on technology level by the use of a unique 3D charge compensation approach, with better utilization of the silicon area and the first time use of a metal gate in a trench power MOSFET
- The lowered charges together with the improved switching homogeneity enhance the system efficiency in the application across all load conditions
- Optimized transfer characteristics with a low temperature coefficient enable a safe operating area that is enhanced over the capabilities of the predecessor technology, widening the range of suitable applications
- Efficiency measurements in targeted SMPS (switched mode power supply) applications under hard- and soft-switching conditions confirm the promises from the findings on the semiconductor device level, with realized efficiency improvements of up to 0.7 %

Part of your life. Part of tomorrow.